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Abstract— Four algorithms for time-frequency (TF) distri-
butions are considered for the processing and interpretation
of dispersive time-domain (TD) data: The short-time Fourier
.transform, frequency and time-domain wavelets, and a new
ARMA-based representation. The TF resolutions of the vari-
ous distributions are discussed and compared with reference
to results for the scattered fields from a chirped finite grating
excited by a pulsed plane wave, The processing in the TF phase
space extracts TD phenomenology, in particular the instanta-
neous dispersion relation—with its associated time-dependent
frequencies—descriptive of the local TD Floquet modes on the
chirped truncated grating.

ITH the trend toward wideband (WB) transient wave-

forms, it is important to understand highly dispersive
structure-induced wave phenomena directly in the time do-
main (TD), because the frequency-dependent scattering angles
of the WB waveforms vary drastically over the bandwidth.
Examples are provided by leaky modes (LM) on layered
configurations [1], [2] and by Floquet modes (FM) excited
by gratings [3], [4]. In a comprehensive study based on the
high-frequency asymptotic behavior of rigorously formulated
TD scattered fields, we have identified novel TD LM and FM
which, although relating specifically to the layered [1], [2] and
grating [3], {4] configurations, describe TD phenomena due to
structure-induced dispersion in general. The asymptotics, due
to inherent localization [5], [6], parametrize the wave physics
in terms of compact wave objects which can be forward and
backward propagated for wave-oriented data processing in
the (space-time)-(wavenumber-frequency) phase space. (For
space-wavenumber processing, see [7].) The accuracy of the
algorithms has been verified in [1]-[4].

In this letter, we concentrate on the TD characteristics of
FM observed at a fixed location as a function of time. The
scattered TD signal is synthesized by inverting a frequency-
domain FM Fourier integral asymptotically [3], [4], and yields
a result parametrized by one or more time-dependent frequen-
cies localized around stationary points. Because the FM are
dispersive, the instantaneous frequencies place time-dependent
constraints on the modal wavenumbers through the FM dis-
persion relation. Thus, a TD dispersive mode is a wavetrain
with varying oscillation frequency dictated by its instantaneous
dispersion inside an envelope weighted by the frequency
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spectrum of the input pulse {3],[ 4]. Specifically, we consider
an N-element weakly aperiodic grating of wires parallel to
the y-axis on the z = 0 plane and located along the z-axis at
points z,,, forn = 0,1,2,..., N —1. For weak departure from
strict periodicity, we have shown [4] that, by introducing the
function z(v) through the replacement of the discrete indexn
by the continuous variable v(n — v), we can define a local
period d(v) = dz(v)/dv = z'(v) in the vicinity of z(v). We
have also shown that the instantaneous frequency associated
with a m # 0 TD-FM excited by a normally incident plane
wave is [4]

er2m|mi)
wm(xazvt) = :I:dm(t) /72— 52’
d(t) = 2 [om(@)],m = £1,£2, . (1)

Here, 7 = ct with ¢ the speed of light in vacuum,m tags the
various FM that propagate away from the grating, and z[v,, (t)]
identifies the localized region on the grating aperture from
where the rays of the mth FM, which reach the observer at
(z, #) at time ¢, originate. The instantaneous dispersion relation
[4] sinb,,(t) = mAn(t)/dn(t)(A = wavelength) reveals
that all m # 0 FM travel to the observer at the same time-
dependent angle 6,,,(t) = sin~}[1 — (z/7)2]'/2. This allows
synthesis of highly resolved short-pulse (SP) scatterings from
the collection of individual wires by superposition, at each
instant of time, of the various interfering TD-FM wavetrains
with their distinct frequencies given by (1). The analysis above
has been generalized to the case of an obliquely incident-
pulsed plane wave [8]; the wave physics in that case is similar
to that for normal incidence but with an escalation in algebraic
complexity.

A useful way to display the role of time-dependent localized
frequencies in scattering data is via time-frequency (TF)
phase-space representations, as examined recently by several
authors. Attention has been given to the Wigner transform
[9], the short-time Fourier transform (STFT) [9]-[11], and a
frequency-domain wavelet transform [10], [11]. Here we look
at the time-dependent frequencies and instantaneous dispersion
relations by comparing four different TF processing schemes
for a grating example, which comprises 20(N = 20) wire
elements at &, = do(n + n2a/2); the aperiodicity parameter
is a = ,0025, corresponding to a maximum variation of nearly
5% in the local period over the extent of the aperiodic grating.

For the problem conditions listed in its caption, Fig. 1
exhibits results for the TD scattered field (bottom plot), for
its conventional global frequency spectrum (left-side plot),
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Fig. 1. Scattering data and processing (see text) for a 20 (N = 20)
element grating of thin wires parallel to they-axis at = = 0 and located
along the z-axis at z, = do(n 4+ n?a/2) for n = 0,1,2,...,N — 1;
the aperiodicity parameter is o = .0025. The normally incident-pulsed plane
wave is described by a Raleigh wavelet [2, 3, 12] with center wavelength
Ac = do /2, and the scattered field is observed at a distance of 20, directly
above the right-most wire. Time is normalized to T" = d, /¢, where ¢ is the
speed of light in vacuum. The TD scattered field and the global frequency
spectrum for the same finite unchirped grating (oo = 0) are shown dashed.
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Fig. 2. FD wavelet transform [10], [11] of scattering data in Fig. 1 from

aperiodic grating. The FD wavelet is adjusted such that in the early time the
STFT Gaussian window is narrow and provides high temporal resolution; as
the window is moved to the late time, it widens and provides good frequency
(poor temporal) resolution. The standard deviation of the Gaussian window is
o =0.481T at 0.272T and grows to 1.222T at the end of TD waveform

and for its instantaneous spectrum obtained via STFT with
a Gaussian window having a standard deviation « = 0.6027T
(center plot). Also shown is the scattered field for the same
finite unchirped grating (o = 0). One observes that even
a weak chirp may introduce significant departures from the
periodic case. The results demonstrate nicely how the STFT
parametrizes the data in terms of instantaneous physical wave
processes that are hidden completely in the global FT. One
discerns two distinct TF signatures: Those with short-time
duration, broad instantaneous bandwidth and negligible dis-
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Fig. 3. Time domain Morlet [13] wavelet transform of scattering data in Fig.

1 corresponding to the aperiodic finite grating. The wavelet has 2.5 periods
of a sine wave within the 3db point of the Gaussian envelope; the Gaussian
envelope has a standard deviation of ¢ =2.15T at frequency 0.69fT and a
standard deviation of o =0.32T at frequency 5.67{T.

persion (vertical bands) at the beginning and the end, and
those with long-time duration, narrow instantaneous bandwidth
and strong dispersion (curved bands). The former represent
SP wavefronts which sweep past the observer during a time
interval equal to the pulse duration whereas the latter represent
sustained oscillatory waves associated with TD-EM [3]. Scat-
tering is seen to occur only over a finite time interval, implying
a scatterer of finite extent, with weak body resonances. Taken
together, the STFT features characterize clearly the scattering
from a finite aperture whose scattering-induced equivalent
excitation is the superposition of several distinct dispersive
wavefields; the initial and final nondispersive pulsed events
are due to diffraction at the truncations and (or) due to a
nondispersive degenerate mode. This interpretation, inferred
directly from the STFT, is in complete accord with the analytic
model [4].

The STFT, which sorts out the basic physics, has constant
TF resolution. To home in better on the modal dispersion
relation (in our case, the TF curve from (1)), we consider
variable-width windowing via two versions of the wavelet
transform. The first, implemented in the frequency domain
(FD), was developed by Ling and Kim [10], [11] and is
essentially a variable window STFT. The FD wavelet (in our
case, a modulated Gaussian) is described in the caption of
Fig. 2. Compared with the STFT (Fig. 1), the results in Fig.
2 do show narrowed definition of the instantaneous dispersion
bands. However, this wavelet transform is known to require
data for which the early and late time response are discernable
clearly. In Fig. 3 the TD transform using the Morlet “mother
wavelet” [13] also implements the high (poor) temporal-poor
(high) frequency resolution tradeoff but without the restrictive
a priori discrimination between early and late times. Since
the TD wavelet transform gathers low- and high- frequency
information by using wide and narrow time windows, respec-
tively, the temporal resolution at low frequencies is poor (see
the early-time nondispersive return) but improves at higher
frequencies with correspondingly poorer frequency resolution
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Fig. 4. ARMA processing of scattering data in Fig. 1 corresponding to the
aperiodic finite grating. ARMA processing is perforined .to extract resonant
frequencies and: their residues over windowed portions. of the time-domain
data. A sliding Gaussian window is used as in Fig. 1, with a standard deviation
of 0 =0.602T. For each window position, the poles associated with models
ARMA (8, 1) through ARMA (12, 12) are calculated along with their residues.
Each dot in this figure represents a pole from one of the ARMA models
and its intensity is indicated by the grey scale. The curves represent the
time-dependent dispersion curves of the TDFM as given by (1).

(note that the vertical spread of the modal TF bands is wider
at higher frequencies). The final TF processing. schéme is
based on a newly developed Auto-Regressive Moving Average
(ARMA) algorithm [14] that guarantees stable spectral pole
(and residue) extraction within a sliding TD Gaussian window
(as was used in thé STFT). The poles, weighted by their
respective residues, yield the TF tracks in Fig. 4, which are
seen to coincide closely with the instantaneous frequencies
predicted in (1). The dispersion curves of the m = 1,2, and 3
TDFM modes are predicted very accurately with the ARMA
scheme, while the predicted m = 4 curve is slightly lower than
that given by (1). This may be attributed to weak excitation
of the m = 4 mode since its time-dependent frequen01es are
at the upper edges of the frequency spectrum (see Fig. 1).

‘An additional advantage of the ARMA scheme is its excellent .

stab1hty even in the presence of noise. -

In conclusion, we have processed numerical scattering data
for a chirped truncated grating excited by a pulsed plane wave
to demonstrate extraction of information pertaining to TD
dispersive phenomenology. Four different TF processings have
been presented and compared. The STFT, which is least beset
by artifacts, provides a good first cut at the phenomenology
of TD wave objects in the TF phase space. The wavelet
transforms selectively resolve the STFT bands around the
dispersion curves, tracing out instantaneous frequencies. For
the example here, the windowed-ARMA scheme provides the
best TF resolution.
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