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Abstract— Four algorithms for time-frequency (TF) distri-
butions are considered for the processing and interpretation
of dispersive time-domain (TD) dahx The short-time Fourier
transform, frequency and time-domain waveleta, and a new
ARMA-based representation. The TF resolutions of the vari-
ous distributions are discussed and compared with reference
to results for the scattered fields from a chirped finite grating
excited by a pulsed plane wave. The processing in the TF phase
space extracts TD phenomenology, in particular the instanta-
neous dispersion relation—with its associated time-dependent
frequencies-descriptive of the local TD Floquet modes on the
chirped truncated grating.

WITH the trend toward wideband (WB) transient wave-

forms, it is important to understand highly dispersive

structure-induced wave phenomena directly in the time do-

main (TD), because the frequency-dependent scattering angles

of the WB waveforms vary drastically over the bandwidth.

Examples are provided by leaky modes (LM) on layered

configurations [1], [2] and by Floquet modes (FM) excited

by gratings [3], [4]. In a comprehensive study based on the

high-frequency asymptotic behavior of rigorously formulated

TD scattered fields, we have identified novel TD LM and FM

which, although relating specifically to the layered [1], [2] and

grating [3], [4] configurations, describe TD phenomena due to

structure-induced dispersion in general. The asymptotic, due

to inherent localization [5], [6], parametrize the wave physics

in terms of compact wave objects which can be forward and

backward propagated for wave-oriented data processing in

the (space-time) -(wavenumber-frequency) phase space. (For

space-wavenumber processing, see [7].) The accuracy of the

algorithms has been verified in [1]–[4].

In this letter, we concentrate on the TD characteristics of

FM observed at a fixed location as a function of time. The

scattered TD signal is synthesized by inverting a frequency-

domain FM Fourier integral asymptotically [3], [4], and yields

a result parametrized by one or more time-dependent frequen-

cies localized around stationary points. Because the FM are

dispersive, the instantaneous frequencies place time-dependent

constraints on the modal wavenumbers through the FM dis-

persion relation. Thus, a TD dispersive mode is a wavetrain

with varying oscillation frequency dictated by its instantaneous

dispersion inside an en~elope weighted by the frequency
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spectrum of the input pulse [3],[ 4]. Specifically, we consider

an IV-element weakly aperiodic grating of wires parallel to

the y-axis on the z = O plane and located along the z-axis at

points Zn, forrz = 0,1,2,..., N – 1. For weak departure from

strict periodicity, we have shown [4] that, by introducing the

function Z(V) through the replacement of the discrete indexn

by the continuous variable v(n -+ v), we can define a local

period d(v) = dx(v)/dv s z’(v) in the vicinity of z(v). We

have also shown that the instantaneous frequency associated

with a m # O TD-FM excited by a normally incident plane

wave is [4]

cr27rlml
(J&(z, .z,t) = +

Cim(t)/m’
din(t) = z’[vm(t)], m = +1,+2, . . . . (1)

Here, r = etwith c the speed of light in vacuum,m tags the

various FM that propagate away from the grating, and Y [vm (t)]

identifies the localized region on the grating aperture from

where the rays of the mt h FM, which reach the observer at

(a, z) at time t,originate. The. instantaneous dispersion relation

[4] sin @m(t) = mAm(t)/dm(t)(~ = wavelength) reveals

that all m # O FM travel to the observer at the same time-

dependent angle On(t) = sin–l [1 – (.Z/T)2] 1/2. This allows

synthesis of highly resolved short-pulse (SP) scattering from

the collection of individual wires by superposition, at each

instant of time, of the various interfering TD-FM wavetrains

with their distinct frequencies given by (l). The analysis above

has been generalized to the case of an obliquely incident-

pulsed plane wave [8]; the wave physics in that case is similar

to that for normal incidence but with an escalation in algebraic

complexity.

A useful way to display the role of time-dependent localized

frequencies in scattering data is via time-frequency (TF)

phase-space representations, as examined recently by several

authors. Attention has been given to the Wigner transform

[9], the short-time Fourier transform (STFT) [9]–[1 1], and a

frequency-domain wavelet transform [10], [11], Here we look

at the time-dependent frequencies and instantaneous dispersion

relations by comparing four different TF processing schemes

for a grating example, which comprises 20(AI = 20) wire

elements at ~. = do (n + n2a/2); the aperiodlcity parameter

is a = ,0025, corresponding to a maximum variation of nearly
5% in the local period over the extent of the aperiodic grating.

For the problem conditions listed in its caption, Fig. 1

exhibits results for the TD scattered field (bottom plot), for

its conventional global frequency spectrum (left-side plot),
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Fig. 1. Scattering data and processing (see text) for a 20 (N = 20)

element grating of thin wires parallel to they-axis at z = O and located
along the z-axis at z~ = do(n + n2a/2) for n = 0,1,2, . . ..IV – 1;

the aperiodicity parameter is a = .0025. The normally incident-pulsed plane
wave is described by a Rafeigh wavelet [2, 3, 12] with center wavelength
& = do/2, and the scattered field is observed at a distance of 20& directly
above the right-most wire. Time is normalized to T = d“ /c, where c is the

speed of light in vacuum. The TD scattered field and the glObal frequency
spectrum for the same finite unchirped grating (a = O) are shown dashed.
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Fig. 2. FD wavelet transform [10], [11] of scattering data in Fig. 1 from
aperiodic grating. The FD wavelet is adjusted such that in the early time the

STFT Gaussian window is narrow and provides high temporal resolution; as
the window is moved to the late time, it widens and provides good frequency
(poor temporal) resolution, The standard deviation of the Gaussian window is
a =0.4S1 T at 9 872T and ~i-ow, to 1.233T at the end of TD waveform

and for its instantaneous spectrum obtained via STFT with

a Gaussian window having a standard deviation a = 0.602T

(center plot). Also shown is the scattered field for the same

finite unchirped grating (a = O). One observes that even

a weak chirp may introduce significant departures from the

periodic case. The results demonstrate nicely how the STFT

parametrizes the data in terms of instantaneous physical wave

processes that are hidden completely in the global FT. One

discerns two distinct TF signatures: Those with shot--time

duration, broad instantaneous bandwidth and negligible dis-
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Fi~, 3. Time domain Morlet r131 wavelet transform of scattering data in Fig.

1 ~orresponding to the aperio~ic”finite grating. The wavelet ha; 2.5 perio&

of a sine wave within the 3db point of the Gaussian envelope; the Gaussian
envelope has a strmdard deviation of a =2. 15T at frequency 0.69ff and a

standard deviation of a =0.32T at frequency 5.67fT.

persion (vertical bands) at the beginning and the end, and

those with long-time duration, narrow instantaneous bandwidth

and strong dispersion (curved bands). The former represent

SP wavefronts which sweep past the observer during a time

interval equal to the pulse duration whereas the latter represent

sustained oscillatory waves associated with TD-FM [3]. Scat-

tering is seen to occur only over a finite time interval, implying

a scatterer of finite extent, with weak body resonances. Taken

together, the STFT features characterize clearly the scattering

from a finite aperture whose scattering-induced equivalent

excitation is the superposition of several distinct dispersive

wavefields; the initial and final nondispersive pulsed events

are due to diffraction at the truncations and (or) due to a

nondispersive degenerate mode. This interpretation, inferred

directly from the STFT, is in complete accord with the analytic

model [4].

The STFT, which sorts out the basic physics, has constant

TF resolution. To home in better on the modal dispersion

relation (in our case, the TF curve from (l)), we consider

variable-width windowing via two versions of the wavelet

transform. The first, implemented in the frequency domain

(FD), was developed by Ling and Kim [10], [11] and is

essentially a variable window STFT. The FD wavelet (in our

case, a modulated Gaussian) is described in the caption of

Fig. 2. Compared with the STFT (Fig. 1), the results in Fig.

2 do show narrowed definition of the instantaneous dispersion

bands. However, this wavelet transform is known to require

data for which the early and late time response are discernible

clearly. In Fig. 3 the TD transform using the lvlorlet “mother

wavelet” [13] also implements the high (poor) temporal-poor

(high) frequency resolution tradeoff but without the restrictive

a priori discrimination between early and late times. Since

the TD wavelet transform gathers low- and high- frequency

information by using wide and narrow time windows, respec-

tively, the temporal resolution at low frequencies is poor (see

the early-time nondispersive return) but improves at higher

frequencies with correspondingly poorer frequency resolution
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Fig. 4. ARMA processing of scattering data in Fig. 1 corresponding to the
aperiodic finite grating. ARMA processing is performed to extract resonant

frequencies and their residues over windowed portions of the time-domain
data. A sliding Gaussian window is used as in Fig. 1, with a standard deviation
of o =0.602T. For each window position, the poles associated with models
ARMA (8, 1) through ARMA (12, 12) are calculated afong with their residues.
Each dot in this figure represents a pole from one of the ARMA models
and its intensity is indicated by the grey scale. The curves represent the
time-dependent dispersion curves of the TDFM as given by (1).

(note that the vertical spread of the modal TF bands is wider

at higher frequencies). The final TF processing. scheme is

based on a newly developed Auto-Regressive Moving Average

(ARMA) algorithm [14] that guarantees stable spectral pole

(and residue) extraction within a sliding TD Gaussian window

(as was used in the STFT). The poles, weighted by their

respective residues, yield the TF tracks in Fig. 4, which are

seen to coincide closely with the instantaneous frequencies

predicted in (l). The dispersion curves of the m = 1,2, and 3

TDFM modes are predicted very accurately with the ARMA

scheme, while the predicted m = 4 curve is slightly lower than

that given by (l). This may be attributed to weak excitation

of the m = 4 mode since its time-dependent frequencies are

at the upper edges of the frequency spectrum (see Fig. 1).

An additional advantage of the ARMA scheme is its excellent

stability even in the presence of noise.

In conclusion, we have processed numerical scattering data

for a chirped truncated grating excited by a pulsed plane wave

to demonstrate extraction of information pertaining to TD

dispersive phenomenology. Four different TF processing have

been presented and compared. The STFT, which is least beset

by artifacts, provides a good first cut at the phenomenology

of TD wave objects in the TF phase space. The wavelet

transforms selectively resolve the’ STFT bands around the

dispersion curves, tracing out instantaneous frequencies. For

the example here, the windowed-ARMA scheme provides the

best
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